Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
ap2(ap2(f, x), x) -> ap2(ap2(x, ap2(f, x)), ap2(ap2(cons, x), nil))
ap2(ap2(ap2(foldr, g), h), nil) -> h
ap2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> ap2(ap2(g, x), ap2(ap2(ap2(foldr, g), h), xs))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
ap2(ap2(f, x), x) -> ap2(ap2(x, ap2(f, x)), ap2(ap2(cons, x), nil))
ap2(ap2(ap2(foldr, g), h), nil) -> h
ap2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> ap2(ap2(g, x), ap2(ap2(ap2(foldr, g), h), xs))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
ap2(ap2(f, x), x) -> ap2(ap2(x, ap2(f, x)), ap2(ap2(cons, x), nil))
ap2(ap2(ap2(foldr, g), h), nil) -> h
ap2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> ap2(ap2(g, x), ap2(ap2(ap2(foldr, g), h), xs))
The set Q consists of the following terms:
ap2(ap2(f, x0), x0)
ap2(ap2(ap2(foldr, x0), x1), nil)
ap2(ap2(ap2(foldr, x0), x1), ap2(ap2(cons, x2), x3))
Q DP problem:
The TRS P consists of the following rules:
AP2(ap2(f, x), x) -> AP2(x, ap2(f, x))
AP2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> AP2(g, x)
AP2(ap2(f, x), x) -> AP2(ap2(cons, x), nil)
AP2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> AP2(ap2(g, x), ap2(ap2(ap2(foldr, g), h), xs))
AP2(ap2(f, x), x) -> AP2(ap2(x, ap2(f, x)), ap2(ap2(cons, x), nil))
AP2(ap2(f, x), x) -> AP2(cons, x)
AP2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> AP2(ap2(ap2(foldr, g), h), xs)
The TRS R consists of the following rules:
ap2(ap2(f, x), x) -> ap2(ap2(x, ap2(f, x)), ap2(ap2(cons, x), nil))
ap2(ap2(ap2(foldr, g), h), nil) -> h
ap2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> ap2(ap2(g, x), ap2(ap2(ap2(foldr, g), h), xs))
The set Q consists of the following terms:
ap2(ap2(f, x0), x0)
ap2(ap2(ap2(foldr, x0), x1), nil)
ap2(ap2(ap2(foldr, x0), x1), ap2(ap2(cons, x2), x3))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
AP2(ap2(f, x), x) -> AP2(x, ap2(f, x))
AP2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> AP2(g, x)
AP2(ap2(f, x), x) -> AP2(ap2(cons, x), nil)
AP2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> AP2(ap2(g, x), ap2(ap2(ap2(foldr, g), h), xs))
AP2(ap2(f, x), x) -> AP2(ap2(x, ap2(f, x)), ap2(ap2(cons, x), nil))
AP2(ap2(f, x), x) -> AP2(cons, x)
AP2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> AP2(ap2(ap2(foldr, g), h), xs)
The TRS R consists of the following rules:
ap2(ap2(f, x), x) -> ap2(ap2(x, ap2(f, x)), ap2(ap2(cons, x), nil))
ap2(ap2(ap2(foldr, g), h), nil) -> h
ap2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> ap2(ap2(g, x), ap2(ap2(ap2(foldr, g), h), xs))
The set Q consists of the following terms:
ap2(ap2(f, x0), x0)
ap2(ap2(ap2(foldr, x0), x1), nil)
ap2(ap2(ap2(foldr, x0), x1), ap2(ap2(cons, x2), x3))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 1 SCC with 3 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
AP2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> AP2(g, x)
AP2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> AP2(ap2(g, x), ap2(ap2(ap2(foldr, g), h), xs))
AP2(ap2(f, x), x) -> AP2(ap2(x, ap2(f, x)), ap2(ap2(cons, x), nil))
AP2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> AP2(ap2(ap2(foldr, g), h), xs)
The TRS R consists of the following rules:
ap2(ap2(f, x), x) -> ap2(ap2(x, ap2(f, x)), ap2(ap2(cons, x), nil))
ap2(ap2(ap2(foldr, g), h), nil) -> h
ap2(ap2(ap2(foldr, g), h), ap2(ap2(cons, x), xs)) -> ap2(ap2(g, x), ap2(ap2(ap2(foldr, g), h), xs))
The set Q consists of the following terms:
ap2(ap2(f, x0), x0)
ap2(ap2(ap2(foldr, x0), x1), nil)
ap2(ap2(ap2(foldr, x0), x1), ap2(ap2(cons, x2), x3))
We have to consider all minimal (P,Q,R)-chains.